ПATIBIA UПIVERSITY
 of SCIEחCE AחD TECHחOLOGY

> FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES
> DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: BACHELOR OF SCIENCE HONOURS IN APPLIED MATHEMATICS	
QUALIFICATION CODE: 08BSHM	LEVEL: $\mathbf{8}$
COURSE CODE: PDE801S	COURSE NAME: PARTIAL DIFFERENTIAL EQUATIONS
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 98

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Prof A.S Eegunjobi
MODERATOR:	

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

QUESTION 1 [24 marks]

1. Form partial differential equations
(a) by eliminating the arbitrary functions ϕ from the relation

$$
\begin{equation*}
x y u(x, y)=\phi(x+y+u(x, y)) \tag{7}
\end{equation*}
$$

(b) by eliminating the arbitrary functions f and g from the relation

$$
\begin{equation*}
u(x, y)=f(x+\alpha y)+g(x-\alpha y) \tag{7}
\end{equation*}
$$

(c) by eliminating the arbitrary constants a, b and c from the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{10}
\end{equation*}
$$

QUESTION 2 [24 marks]

2. Solve the following first order PDE
(a) $\frac{\partial u}{\partial x}+3 \frac{\partial u}{\partial y}=5 u+\tan (y-3 x)$
(b) $u \frac{\partial u}{\partial x}-u \frac{\partial u}{\partial y}=(x+y)^{2}+z^{2}$
(c) $x(y-z) \frac{\partial z}{\partial x}+y(z-x) \frac{\partial z}{\partial y}=z(x-y)$

QUESTION 3 [20 marks]

3. (a) Reduce to normal form and hence solve

$$
\begin{equation*}
(y-1) \frac{\partial^{2} z}{\partial x^{2}}-\left(y^{2}-1\right) \frac{\partial^{2} z}{\partial x \partial y}+y(y-1) \frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}=2 y e^{2 x}(1-y)^{3} \tag{10}
\end{equation*}
$$

provided $y \neq 1$
(b) Reduce to normal form

$$
\begin{equation*}
z_{x x}+2 z_{x y}+5 z_{y y}+z_{x}-2 z_{y}-3 z=0 \tag{10}
\end{equation*}
$$

QUESTION 4 [30 marks]

4. (a) Determine the displacement $y(x, t)$ for a taut string with fixed endpoints at $x=0$ and $x=l$, initially held in position $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$ and released from rest.
(b) Find the solution of the Cauchy problem

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=0, \quad x \in \mathbb{R}, \quad t>0, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad x \in \mathbb{R} \tag{15}
\end{equation*}
$$

End of Exam!

